聊聊对称加密、非对称加密、Hash算法

什么是对称加密(Symmetric Key Encryption)?对称加密采用了对称密码编码技术,它的特点是加密和解密使用相同的密钥,用这个密钥都能去加密或解密 。 2020-05-27 10:10:56 对称加密Hash算法数字签名 “人脸识别”已衍生出“性格识别”,科技向善还要多久? 近日,《科学报告》期刊上刊登了一篇有关于人脸识别的新技术,俄罗斯研究团队开发了一款新 AI,可“仅凭一张自拍照片辨别个人性格”。 2020-05-27 09:36:14 人工智能人脸识别技术 算法工程师也会遇到 35 岁这道坎么? 这个问题其实对于大多数程序员都是适用的,国内的互联网公司,始终奋斗在一线写代码、跑算法模型的工程师实在是太少了。 2020-05-27 09:30:52 算法工程师程序员 下一站AI:实时服务 随着实时解决方案的增长与人工智能技术的发展,工作负载的日益提升以及非结构化数据的爆炸式增长,数据中心的发展方向正朝着加速计算、存储与网络适应性前进。 2020-05-26 19:31:09 人工智能AI实时服务 如何用机器学习模型,为十几亿数据预测性别 基于用户画像进行广告投放,是优化投放效果、实现精准营销的基础;而人口属性中的性别、年龄等标签,又是用户画像中的基础信息。那该如何尽量准确的为数据打上这些标签? 2020-05-26 18:50:49 机器学习数据预测标签 教你轻松选择合适的机器学习算法! 译文 机器学习方面没有免费午餐。因此,确定使用哪种算法取决于许多因素:面临的问题类型和预期的输出类型等。本文介绍了为数据集探究合适的机器学习方法时要考虑的几个因素。 2020-05-26 18:35:00 机器学习人工智能AI 你为什么想成为机器学习工程师?是因为热情还是热度? 你是否想过亚马逊、甚至Netflix是如何做到不停地为用户推荐产品的?与大众认为的截然不同,它们不适用于Skynet,随时遇到故障是不太可能的。 2020-05-26 16:56:06 人工智能 新冠疫情加速进入非接触式访问控制新时代 借助新一代的非接触式访问管理系统,用户无需接触可能受到污染的表面就可以进入工作场所,传统的访问控制被淘汰似乎已成定局。 2020-05-26 16:37:13 人工智能疫情面部识别 脑机智能持续升温 未来AI或扮演重要角色 近日,中国科学技术大学先进技术研究院与华米科技联合宣布,共同建立“脑机智能联合实验室”,以突破关键技术。 2020-05-26 16:32:43 人工智能脑机接口技术 霸榜Github:Algorithm Visualizer将算法可视化,算法学习不再难 今天将介绍一个开源项目,它的厉害之处在于有个在线动态演示算法的网站。它就是Algorithm Visualizer。 2020-05-26 16:31:53 算法可视化Github 大学生发明扎钢筋机器人,一小时扎600个,建筑工人又要失业了? 因为人工智能的发展,一些纯靠手工的工人已经逐渐面临失业了,像现在的工厂里面,很多流水线上都已经由人力换成了人工智能。 2020-05-26 16:10:43 机器人人工智能编程 生物识别技术在我们日常生活中的应用 移动电话和技术开发人员将生物识别技术集成到这些设备中,以防止盗窃并确保我们的财物安全。在本文中,我们将探讨这项技术给我们的日常生活带来革命性变化的一些方式。 2020-05-26 14:45:09 生物识别数据安全人工智能 画图太丑拿不出手?有人做了套机器学习专用画图模板,还有暗黑模式 论文、博客写好了,里面的图可怎么画?对于很多研究人员和开发者来说,内容的「可视化」是一个大问题。如果从头开始画,配色、空间布局都很伤脑筋,而且画丑了也拿不出手,要是有模板可以套就好了。

什么是对称加密(Symmetric Key Encryption)?对称加密采用了对称密码编码技术,它的特点是加密和解密使用相同的密钥,用这个密钥都能去加密或解密 。

[[327803]]

对称加密

什么是对称加密(Symmetric Key Encryption)?

对称加密采用了对称密码编码技术,它的特点是加密和解密使用相同的密钥,用这个密钥都能去加密或解密 。

基本过程:

甲方(主导方或者服务器方)生成加密密钥,将密钥私下共享给乙方(客户方或者受众方),当甲方或者乙方用密文信息交换时,均用此钥将明文加密生成密文或者密文解密生成明文

常见的对称加密算法:

DES、3DES、Blowfish、IDEA、RC4、RC5、RC6和AES

常用的对称加密算法:

AES、DES

优点:

生成密钥的算法公开、计算量小、加密速度快、加密效率高、密钥较短

缺点:

一方面:双方共同的密钥,有一方密钥被窃取,双方都影响。另一方面:如果为每个客户都生成不同密钥,则密钥数量巨大,密钥管理有压力。

应用场景:

登录信息用户名和密码加密、传输加密、指令加密(如扣款、下单操作)

对称加密、非对称加密、摘要(Hash算法)、数字签名、数字证书

非对称加密

什么是非对称加密(Asymmetric Key Encryption)?

非对称加密算法需要一对密钥(两个密钥):公开密钥(publickey)和私有密钥(privatekey)(简称公钥,私钥)。公开密钥与私有密钥生成时是一对,用公钥加密只能是对应的私钥解密,同理用私钥加密只能用对应的公钥解密。

基本过程:

甲方(主导方或者服务器方)生成一对密钥(也就是公钥和私钥)并将其中的一把公用密钥向其它方公开或者私下共享;得到该公用密钥的乙方使用该公钥对机密信息进行加密后再发送给甲方;甲方再用自己保存的另一把对应的私钥对加密后的信息进行解密。相当于甲方和乙方各持一把钥匙。此时乙方可以是一“人”或者多“人”。

常见的非对称加密算法:

RSA、ECC、Diffie-Hellman、El Gamal、DSA(数字签名用)

常用的非对称加密:

RSA、 ECC

优点:

安全高(几乎很难破解)

缺点:

加解密相对速度慢、密钥长、计算量大、效率低

应用场景:

HTTPS(ssl)证书里制作、CRS请求证书、金融通信加密、蓝牙等硬件信息加密配对传输、关键的登录信息验证。

对称加密、非对称加密、摘要(Hash算法)、数字签名、数字证书

RSA与ECC对比

这两个生成公私密钥对的算法都是基于数学上的当前计算机未解决的数学问题

RSA对极大整数做因数分解的难度决定了RSA算法的可靠性,ECC椭圆曲线密码编码学。

RSA一般加密小量的数据,ECC多用移动设备,两者相比同样的安全性ECC密钥更短,速度更快。传输数据量小。

(1) RSA签名算法适合于:Verify操作频度高,而Sign操作频度低的应用场景。比如,分布式系统中基于capability的访问控制就是这样的一种场景。

(2) ECDSA签名算法适合于:Sign和Verify操作频度相当的应用场景。比如,点对点的安全信道建立

细说对称加密与非对称加密对比

在管理方面:非对称加密比对称加密更有优势,对称加密的密钥管理和分发上比较困难,不是非常安全,密钥管理负担很重。

在安全方面:非对称加密算法基于未解决的数学难题,在破解上几乎不可能。到了对称加密 AES 虽说从理论来说是不可能破解的,但从计算机的发展角度来看。非对称加密安全性更具有优越性;

在速度方面:比如对称加密方式AES 的软件实现速度已经达到了每秒数兆或数十兆比特。是非对称加密公钥的 100 倍,如果用硬件来实现的话这个比值将扩大到 1000 倍。

对称加密优缺点:对称加密相比非对称加密算法来说,加解密的效率要高得多、加密速度快。

非对称加密优缺点:安全性更高,公钥是公开的,密钥是自己保存的,不需要将私钥给别人。缺点:加密和解密花费时间长、速度慢,只适合对少量数据进行加密。

摘要(Hash算法)

摘要特别的地方在于它是一种单向算法,单向散列函数一般用于产生消息摘要,用户可以通过hash算法对目标信息生成一段特定长度的唯一hash值,却不能通过这个hash值重新逆向获得目标原文信息。(非可逆到原明文,相同的明文产生相同的摘要)

常见的Hash算法

MD2、MD4、MD5、HAVAL、SHA、SHA-1

常用的Hash算法

MD5、SHA-1

应用场景:

1, Hash算法常用在不可还原的密码存储、信息完整性校验。

2,文档、音视频文件、软件安装包等用新老摘要对比是否一样(接收到的文件是否被修改)

3, 用户名或者密码加密后数据库存储(数据库大多数不会存储关键信息的明文,就像很多登录功能的忘记密码不能找回,只能重置)

4,数字签名和数据检索。

SHA-1 与 MD5 的比较 :

因为二者均由 MD4 导出,SHA-1 和 MD5 彼此很相似。相应的,他们的强度和其他特性也是相似。

安全性:最显著和最重要的区别是 SHA-1 摘要比 MD5 摘要长 32 位。使用强行技术,产生任何一个报文使其摘要等于给定报摘要的难度对 MD5 是 2128 数量级的操作,而对 SHA-1 则是 2160 数量级的操作。这样,SHA-1 对强行攻击有更大的强度;对密码分析的安全性:由于 MD5 的设计,易受密码分析的攻击,SHA-1 显得不易受这样的攻击;

速度:在相同的硬件上,SHA-1 的运行速度比 MD5 慢

数字签名

数字签名非常简单,它是对上文中的摘要进行加密后得到数字签名。

也就是说,数字签名是由明文本身的内容经过hash算法计算得到digest摘要,然后用甲方(或者发起方或者直接代号A)的私钥加密而来的。简单理解就是,数字签名 = 对摘要加密

它主要解决你给了我摘要,但是谁知道这个摘要到底是不是你的摘要。如何保证你给的摘要在到我手上之前没被修改。所以就用了对方的私钥加密摘要。如果此时不是个人,而是信任的机构所做的签名,其实就是公证。

数字证书

上文中非对称加密、Hash摘要的应用场景都是提起到数字证书。也就是说数字证书是基于他们生成的。

数字证书是A(或者说甲方)向数字证书中心(CA)申请的,是由A的个人(或甲方的机构企业)信息,公钥等经过CA的私钥加密而来的。相当于进行公证。而数字证书中心(CA)就是根证书的生产单位,很多Windows系统的浏览器根证书都是由一个或多个可信根的证书颁发机构。(微软、苹果也有根证书颁发机构机构)。

过程如下:

1,产生数字证书请求(我求你办事需要你盖章,我准备的东西)

由于原文可能数据很大,非对称加解密比较耗时导致时间长,网络传输数据量大,所以证书请求生成时,需要对原文或者信息进行hash摘要(MD5或者SHA的方式),这样不管原信息多长,就得到固定的短信息摘要,然后再用A(或者甲方)的私钥进行数字签名(对摘要加密) 。然后将签名+个人(或机构企业)信息+公钥三者要素合成一个CRS(证书请求)让CA(数字证书中心)去生成数字证书(就是CA私钥加密),或者说你给盖章。这样CA就会给你一个相当于公证认可后的数字证书。

对称加密、非对称加密、摘要(Hash算法)、数字签名、数字证书

生成证书请求

2,拿到CA的签名的证书后解密过程

【PS:证书是可以上下关联的,比如经过根证书得到的子证书的机构还可以生成证书,相当于多次加密,此时证书解密需要过程会层层CA公钥解密】

应用场景:

常见的https的证书、区块链证书、一些金融开户或者蓝牙链接传输等。

©本文为清一色官方代发,观点仅代表作者本人,与清一色无关。清一色对文中陈述、观点判断保持中立,不对所包含内容的准确性、可靠性或完整性提供任何明示或暗示的保证。本文不作为投资理财建议,请读者仅作参考,并请自行承担全部责任。文中部分文字/图片/视频/音频等来源于网络,如侵犯到著作权人的权利,请与我们联系(微信/QQ:1074760229)。转载请注明出处:清一色财经

(0)
打赏 微信扫码打赏 微信扫码打赏 支付宝扫码打赏 支付宝扫码打赏
清一色的头像清一色管理团队
上一篇 2023年5月4日 12:11
下一篇 2023年5月4日 12:11

相关推荐

发表评论

登录后才能评论

联系我们

在线咨询:1643011589-QQbutton

手机:13798586780

QQ/微信:1074760229

QQ群:551893940

工作时间:工作日9:00-18:00,节假日休息

关注微信