做大数据分析时,这几个技巧可以带来帮助

对于大数据而言,以业务为中心的方式分析它的挑战是实现这一目标的唯一方法,即确保公司制定数据管理策略。但是,有一些技术可以优化您的大数据分析,并最大限度地减少可能渗入这些大型数据集的“噪音”。 2018-09-06 18:42:37 数据分析数据收集数据质量 大数据与分析正在重新定义5个行业:医学、零售、建筑、银行、交通 医疗行业依靠专用设备来跟踪生命体征、协助医生诊断。医疗行业同样也使用大数据和分析工具以多种方式改善健康状况。此外,大数据分析可帮助医院管理人员进行安排,以期减少患者的等待时间并改善护理条件。

对于大数据而言,以业务为中心的方式分析它的挑战是实现这一目标的唯一方法,即确保公司制定数据管理策略。但是,有一些技术可以优化您的大数据分析,并最大限度地减少可能渗入这些大型数据集的“噪音”。

现在数据已经成为了一些企业的“天”。近年来,近年来越来越多的公司已经意识到数据分析可以带来的价值,并且已经跳上了大数据旅行车。实际上,现在所有的一切都在被监控和测量,创造了大量的数据流,通常比公司可以处理的速度更快。问题是,根据定义,大数据很大,因此数据收集中的小差异或错误可能导致重大问题,错误信息和不准确的推论。

[[242827]]

对于大数据而言,以业务为中心的方式分析它的挑战是实现这一目标的唯一方法,即确保公司制定数据管理策略。

[[242828]]

但是,有一些技术可以优化您的大数据分析,并***限度地减少可能渗入这些大型数据集的“噪音”。以下是几个技术技巧做参考:

优化数据收集

数据收集是事件链中的***步,最终导致业务决策。确保收集的数据与业务感兴趣的指标的相关性非常重要。

定义对公司有影响的数据类型以及分析如何为底线增加价值。从本质上讲,考虑客户行为以及这对您的业务有何针对性,然后使用这些数据进行分析。

存储和管理数据是数据分析中的重要一步。必须保持数据质量和分析效率。

[[242829]]

把垃圾带出去

肮脏的数据是大数据分析的祸害。这包括不准确,冗余或不完整的客户信息,可能会对算法造成严重破坏并导致分析结果不佳。基于脏数据做出决策是一个有问题的场景。

清理数据至关重要,涉及丢弃无关数据并仅保留高质量,***,完整和相关的数据。人工干预不是理想的范例,是不可持续和主观的,因此数据库本身需要清理。这种类型的数据以各种方式渗透到系统,包括时间相关的转移,例如更改客户信息或数据孤岛中的存储,这可能会破坏数据集。脏数据可能会影响营销和潜在客户生成等明显的行业,但财务和客户关系也会因基于错误信息的业务决策而受到不利影响。后果很普遍,包括盗用资源,重点和时间。

这个脏数据难题的答案是确保进入系统的数据干净的控制措施。具体而言,重复免费,完整和准确的信息。有些应用程序和公司专门研究反调试技术和清理数据,这些途径应该针对任何对大数据分析感兴趣的公司进行调查。数据卫生是营销人员的首要任务,因为不良数据质量的连锁效应可能会大大降低企业的成本。

为了在数据方面获得***收益,必须花时间确保质量足以为决策和营销策略提供准确的业务视图。

[[242830]]

标准化数据集

在大多数业务情况下,数据来自各种来源和各种格式。这些不一致可能转化为错误的分析结果,这可能会大大扭曲统计推断。为了避免这种可能性,必须确定数据的标准化框架或格式并严格遵守它。

数据集成

如今,大多数企业都包含不同的自治部门,因此许多企业都拥有孤立的数据存储库或“孤岛”。这很具挑战性,因为来自一个部门的客户信息的变化不会转移到另一个部门,因此他们将根据不准确的源数据做出决策。

为了解决这个问题,中央数据管理平台是必要的,集成了所有部门,从而确保了数据分析的准确性,因为任何变更都可以立即被所有部门访问。

数据隔离

即使数据干净,有组织和集成在那里,也可能是分析问题。在这种情况下,将数据分组成小组很有帮助,同时牢记分析正在努力实现的目标。这样,可以分析子组内的趋势,这可能更有意义并且具有更大的价值。在查看可能与整个数据集无关的高度特定的趋势和行为时尤其如此。

数据质量对于大数据分析至关重要。许多公司试图用分析软件直奔潜水,而不考虑进入系统的内容。导致不准确的推断和解释,这可能是昂贵的并且对公司造成损害。一个定义明确,管理良好的数据库管理平台是企业利用大数据分析不可或缺的工具

©本文为清一色官方代发,观点仅代表作者本人,与清一色无关。清一色对文中陈述、观点判断保持中立,不对所包含内容的准确性、可靠性或完整性提供任何明示或暗示的保证。本文不作为投资理财建议,请读者仅作参考,并请自行承担全部责任。文中部分文字/图片/视频/音频等来源于网络,如侵犯到著作权人的权利,请与我们联系(微信/QQ:1074760229)。转载请注明出处:清一色财经

(0)
打赏 微信扫码打赏 微信扫码打赏 支付宝扫码打赏 支付宝扫码打赏
清一色的头像清一色管理团队
上一篇 2023年5月6日 05:26
下一篇 2023年5月6日 05:27

相关推荐

发表评论

登录后才能评论

联系我们

在线咨询:1643011589-QQbutton

手机:13798586780

QQ/微信:1074760229

QQ群:551893940

工作时间:工作日9:00-18:00,节假日休息

关注微信