以大数据技术引领 强化银行风险管控和不良资产处置

大数据技术手段的应用,为现有征信体系建设提供了很好的补充和强化作用。当前一些企业所做的尝试表明,大数据可以帮助银行提高征信水平和风险监控能力。 2016-10-24 13:40:50 大数据不良资产银行风险 实施大数据项目需要牢记避免的6个错误做法 大多数组织为其成功实施项目工作,都已经制定了一套大数据的最佳做法。当涉及到大数据和分析时,列出企业应该远离的陷阱清单也同样重要。以下是企业实施大数据项目中要牢记的六个注意事项,是大数据项目实施中不要犯的错误做法,以保持业务具有较低的风险和高成功率。 2016-10-24 12:47:09 大数据大数据项目 数据中心决策之虚拟化管理与灾难恢复 目前对于虚拟化管理软件,70%的商业专家希望虚拟化管理软件能监控服务器的可用性。60%的人希望软件可以监控网络的性能,50%的人希望能够管理系统安全性,53%的人希望软件对容量规划做出一份公告,52%的人希望软件能管理配置和变更以及执行其他任务。 2016-10-24 12:42:52 数据中心 电商新趋势下的数据分析实践与思考 原创 从2015年开始移动电商大幅度崛起,电商整体上升趋势减缓,移动电商崛起,原有PC端流量减少,指标下降。新形势下用户与商品之间的关系包括:数据关系、技术问题、算法策略、产品形态、平台策略。 2016-10-24 11:24:22 电商数据 理解Spark的核心RDD RDD,全称为Resilient Distributed Datasets,是一个容错的、并行的数据结构,可以让用户显式地将数据存储到磁盘和内存中,并能控制数据的分区。 2016-10-24 09:52:45 SparkRDD容错 运用大数据防控互联网金融犯罪 随着互联网和大数据技术的日趋成熟,我国应逐步构建互联网金融犯罪防控的综合法律体系,逐步完善互联网金融犯罪的防控措施,为经济发展和社会稳定提供保障。 2016-10-24 09:48:02 大数据互联网犯罪 如何成为一名数据科学家? 在现实生活,“数据科学家”这个词可以指代非常广泛的工种,因此它存在很多种形式,考虑到工业界以及商业界各种需求的不同,还有问题中目标与输出角色的不同。 2016-10-21 19:59:43 数据科学家数据科学 KDnuggets 官方调查:数据科学家最常用的十种算法 最新一期的 KDnuggets 调查展示了一份数据科学家使用度最高的算法列表,这份列表中包含了很多惊喜,包括最学术的算法和面向产业化的算法。 2016-10-21 19:44:08 数据科学家算法 数据科学之路(上) 有些人可能会说没有数据科学家的时候,公司也一样能做数据,也有数据团队,也有这些岗位啊?数据科学家又是个什么鬼? 2016-10-21 19:24:35 数据科学家数据科学 一文读懂 CNN、DNN、RNN 内部网络结构区别 从广义上来说,NN(或是更美的DNN)确实可以认为包含了CNN、RNN这些具体的变种形式。在实际应用中,所谓的深度神经网络DNN,往往融合了多种已知的结构,包括卷积层或是LSTM单元。但是就题主的意思来看,这里的DNN应该特指全连接的神经元结构,并不包含卷积单元或是时间上的关联。 2016-10-21 18:40:43 CNNDNNRNN 如何成为数据分析师 最近几年大数据的概念比较火,越来越多的人感受到数据的价值,许多公司都开始招聘数据分析相关的职位。但如果你去看看国内的高校,会发现没有一所大学开有数据分析专业的,职位的成熟度还不够。

大数据技术手段的应用,为现有征信体系建设提供了很好的补充和强化作用。当前一些企业所做的尝试表明,大数据可以帮助银行提高征信水平和风险监控能力。

[[174256]]

在智慧科技产业飞速发展的当下,以大数据技术为依托的若干大数据产品在金融领域逐渐开拓出广阔的运用空间。特别是在控制银行风险和降低不良资产领域,目前已经有了较为成熟的实践。事实上,不良贷款的产生除了受近年来国内外经济大环境影响外,还与现有的征信体系和银行传统的征信方式不适应现代经济发展的实际情况有关,而大数据正是解决这一难题的有力工具。

我国征信体系建设起步于1992年,但现有征信体系覆盖范围仍很有限。个人征信系统中反映的仅是个人或企业与银行间发生的信用情况,企业与企业间的商业信用关系以及个人与多方面的信用关系并没有得到系统的记录与反映。

与此同时,银行传统的征信方式也无法满足现代经济发展的实际情况。现代经济发展使企业和个人的经济活动发生了巨大变化,涉及范围更大、内容更加丰富,因此,衡量信用的维度更多样。银行仅仅依靠财务报表已无法了解企业的真实情况,而权威机构的公开信息系统还无法涵盖有关企业及个人社会行为的所有信用信息。这些不足导致现有银行的征信系统对客户了解的信息维度不够,信息真实性不高,信息采集、分类的科学性不强,进而使银行无法准确地对客户的诚信作出判断,对客户经营活动无从掌握,对客户的未来发展无法预测。

大数据技术手段的应用,为现有征信体系建设提供了很好的补充和强化作用。当前一些企业所做的尝试表明,大数据可以帮助银行提高征信水平和风险监控能力。

首先,一站式征信平台可以进行贷前客户甄别。目前,银行查询客户的情况既费时、费力,又增加银行费用,而利用企业的一站式征信平台,则可以***限度地节省银行的人力、物力及时间,并确保数据有效、及时、准确。

其次,风险量化平台可以助力贷后风险监控。平台基于企业日常经营数据,结合平台数据模型,采用动态、实时的云端数据抓取技术,对企业的发展进行分析和评测,给出风险量化分数,并***时间发现企业的生产经营异动,在风险触发前3到6个月预警,使银行等金融机构能够及时采取相应措施,防止和减少损失发生。

同时,利用“企业族谱”查询,对不良贷款进行监控。如一些企业通过关联交易转移利润、制造亏损的假象,为不偿还银行贷款寻找理由;或者通过关联交易制造虚假业绩,为继续获得银行贷款提供依据,这些假象通过关联交易查询,都可以很快发现蛛丝马迹,让企业造假暴露原形,可防止银行上当受骗。

值得一提的是,大数据技术将有效解决中小微企业融资难题。银行发展中小微企业客户既是国家的要求,也是银行自身改善客户结构的需要。但是,有融资需求的中小微企业普遍存在资产少、担保不足的问题。运用金电联行的工具,在企业提供反映其真实经营状况的历史数据的基础上,通过大数据挖掘和分析技术,可挖掘出企业真实的经营状况、健康状况、盈利能力及企业历史信用积累情况,真正展现出企业实际经营信息,并给出企业的信用等级和信用额度,从而为银行或相关金融机构提供贷款依据,缓解中小微企业融资难题,挖掘潜在优质客户。

除此之外,还可以提高信用卡发卡质量,合理增信,防止不良客户产生。大数据企业有多项独特的个人外部数据来源和评分系统来协助银行进行信用卡新卡发卡审批、审批额度、增信、交易监控等业务管理环节。

金融的本质是经营风险,如何做好风控尤为重要。特别是在当前经济新常态下,中小企业承受着不同程度的压力,银行风险开始涌现。在此背景下,金融机构如何对已贷款客户进行有效的风险度量,无疑是迫切的现实需求。由此,提前抑制风险就成为银行利用大数据技术所要实现的首要目标。

某股份制银行董事长曾谈到量化风险管理给银行带来的三大收获:“一是至少可以比其他银行跑得快一点儿;二是实现了***限度的信息对称;三是效率与准确度大幅度提升,摆脱大量人工之后,有利于将贷后风险管理上收总行及分行,大幅提升管理透明度。”而据某商业银行测算,大数据技术能有效降低不良率47%以上。

由于大数据技术在某种程度上相当于给中小微企业加了一套体检设备,这样筛查出来的好企业,银行就敢于放贷,从而很好地解决了融资难的问题。此外,通过大数据技术催生新的金融服务模式,实现了全线上的流程再造。即将传统的人工点对点模式升级为智能、批量的高效模式,可以***程度地降低成本,助推金融机构转型发展。

特别是,针对以往基层银行客户多、人员少,无法做到实时监控,难以及时发现风险的状况,大数据产品的运用,则可以帮助银行做到风险监控实时化、动态化,从而避免和减少损失。

©本文为清一色官方代发,观点仅代表作者本人,与清一色无关。清一色对文中陈述、观点判断保持中立,不对所包含内容的准确性、可靠性或完整性提供任何明示或暗示的保证。本文不作为投资理财建议,请读者仅作参考,并请自行承担全部责任。文中部分文字/图片/视频/音频等来源于网络,如侵犯到著作权人的权利,请与我们联系(微信/QQ:1074760229)。转载请注明出处:清一色财经

(0)
打赏 微信扫码打赏 微信扫码打赏 支付宝扫码打赏 支付宝扫码打赏
清一色的头像清一色管理团队
上一篇 2023年5月6日 02:54
下一篇 2023年5月6日 02:54

相关推荐

发表评论

登录后才能评论

联系我们

在线咨询:1643011589-QQbutton

手机:13798586780

QQ/微信:1074760229

QQ群:551893940

工作时间:工作日9:00-18:00,节假日休息

关注微信