数据分析
-
数据分析的经典方法之:结构分析法
类似的方法,还有矩阵分析法、趋势分析法、漏斗分析法。这些方法的共同点,就是:用一组有逻辑的指标,树立清晰的标杆,长期监控业务变化,从而快速得出结论。
-
数据分析和机器学习的11个高级可视化图表介绍
可视化是一种强大的工具,用于以直观和可理解的方式传达复杂的数据模式和关系。它们在数据分析中发挥着至关重要的作用,提供了通常难以从原始数据或传统数字表示中辨别出来的见解。
-
大数据面临的六个挑战以及如何利用云计算克服这些挑战?
企业在利用大数据的力量时遇到的另一个主要挑战是缺乏熟练的人才。大数据分析需要一套独特的技能,包括数据科学、统计、编程和领域专业知识。然而,拥有这些专业技能的专业人员严重短缺。
-
十大数据分析模型之三:矩阵模型
掌握构造矩阵模型的技术后,在很多领域都可以使用。特别是用户行为分析。因为收入、成本这些经营指标经常有KPI的,但用户行为并没有KPI。导致很多同学在做用户行为分析时会迷失方向:到底怎么判定用户行为的好坏?此时可以用上矩阵模型了。
-
Presto 在阿里云实时日志分析中的实践和优化
本文将分享阿里云千亿规模实时日志分析的架构设计和实践。本文将聚焦在存储和分析基础能力上面的建设,重点分享日志分析系统,以及在面对核心问题时的一些架构设计思路和经验。
-
15个高效的Pandas代码片段
Python的Pandas库是数据科学家必备的基础工具,在本文中,我们将整理15个高级Pandas代码片段,这些代码片段将帮助你简化数据分析任务,并从数据集中提取有价值的见解。
-
数据分析:揭示战略重点举措的隐藏模式
在当今快节奏和数据驱动的世界中,企业不断寻求获得竞争优势的方法。为满足这一需求而出现的一种强大工具是数据分析。通过利用数据的巨大力量,企业可以做出更明智的决策并推动战略举措,从而推动他们走向成功。
-
数据分析,如何驱动科学决策
所谓的决策不科学性:原本可以出去玩,结果非宅家惹女朋友不开心。或者本来可以去景点,结果因为不知道,所以没去。通过数据澄清现状,梳理逻辑,可以避免这些问题。
-
这才是真正的数据分析报告,你那只是念PPT
到了每日汇报的时候,很多新人会习惯性地像11号一样写上一堆。甚至还有些官僚化的企业,会把这种格式一直流传下去,一传好几年。最后的结果自然是搞到没人看。为啥?因为从12号开始,已经是例行更新,后续的数据走势其实和之前看起来差不多。
-
利物浦足球俱乐部大力运用云技术和数据分析技术
利物浦足球俱乐部(LFC)负责数字业务的高级副总裁Drew Crisp表示,该俱乐部在过去三年里对所有的数字平台进行了改造,从15到20个数字接触点收集数据,以便更好地了解球迷的在线参与情况。
-
五步法!快速建立数据分析思路
数据分析输出的产品,不像大米白面能直接填饱人的肚子。数据分析的价值是相对的。如果提供的是对方知道的东西,即使给得再多,也不会被认可,甚至会被吐槽:“你太啰嗦了,说重点”。
-
在Python中创建相关系数矩阵的六种方法
相关系数矩阵(Correlation matrix)是数据分析的基本工具。它们让我们了解不同的变量是如何相互关联的。在Python中,有很多个方法可以计算相关系数矩阵,今天我们来对这些方法进行一个总结
-
在Python中创建相关系数矩阵的六种方法
相关系数矩阵(Correlation matrix)是数据分析的基本工具。它们让我们了解不同的变量是如何相互关联的。在Python中,有很多个方法可以计算相关系数矩阵,今天我们来对这些方法进行一个总结
-
Gartner:实施混合式数据分析平台的三个步骤
2023年Gartner中国CIO调研显示,80%的中国受访者依赖中心化IT部门来提供IT架构能力、数据、网络安全标准和政策。
-
StarRocks 如何借助物化视图加速数据分析
本文将分享StarRocks数据湖分析应用场景、物化视图技术,再结合实际用户案例,来帮助读者理解物化视图技术在数据湖分析场景中的价值。